-
基础参数调优经验
HdfsSink中默认的serializer会每写一行在行尾添加一个换行符,我们日志本身带有换行符,这样会导致每条日志后面多一个空行,修改配置不要自动添加换行符;
lc.sinks.sink_hdfs.serializer.appendNewline = false
调大MemoryChannel的capacity,尽量利用MemoryChannel快速的处理能力;
调大HdfsSink的batchSize,增加吞吐量,减少hdfs的flush次数;
适当调大HdfsSink的callTimeout,避免不必要的超时错误; -
HdfsSink获取Filename的优化
HdfsSink的path参数指明了日志被写到Hdfs的位置,该参数中可以引用格式化的参数,将日志写到一个动态的目录中。这方便了日志的管理。例如我们可以将日志写到category分类的目录,并且按天和按小时存放:
lc.sinks.sink_hdfs.hdfs.path = /user/hive/work/orglog.db/%{category}/dt=%Y%m%d/hour=%H
HdfsS ink中处理每条event时,都要根据配置获取此event应该写入的Hdfs path和filename,默认的获取方法是通过正则表达式替换配置中的变量,获取真实的path和filename。因为此过程是每条event都要做的操作,耗时很长。通过我们的测试,20万条日志,这个操作要耗时6-8s左右。
由于我们目前的path和filename有固定的模式,可以通过字符串拼接获得。而后者比正则匹配快几十倍。拼接定符串的方式,20万条日志的操作只需要几百毫秒。 -
HdfsSink的b/m/s优化
在我们初始的设计中,所有的日志都通过一个Channel和一个HdfsSink写到Hdfs上。我们来看一看这样做有什么问题。
首先,我们来看一下HdfsSink在发送数据的逻辑://从Channel中取batchSize大小的events for (txnEventCount = 0; txnEventCount < batchSize; txnEventCount++) { //对每条日志根据category append到相应的bucketWriter上; bucketWriter.append(event); } for (BucketWriter bucketWriter : writers) { //然后对每一个bucketWriter调用相应的flush方法将数据flush到Hdfs上 bucketWriter.flush(); }
假设我们的系统中有100个category,batchSize大小设置为20万。则每20万条数据,就需要对100个文件进行append或者flush操作。
其次,对于我们的日志来说,基本符合80/20原则。即20%的category产生了系统80%的日志量。这样对大部分日志来说,每20万条可能只包含几条日志,也需要往Hdfs上flush一次。
上述的情况会导致HdfsSink写Hdfs的效率极差。
鉴于这种实际应用场景,我们把日志进行了大小归类,分为big, middle和small三类,这样可以有效的避免小日志跟着大日志一起频繁的flush,提升效果明显。